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Abstract:  Increased reliance on pharmacokinet ic  studies in regulatory submissions emphasizes  the need for cross- 
validating bioanalytical methods  between different laboratories to allow comparison of data. Globalization of 
pharmaceut ical  development  results in a greater  need to define cross-validation standards.  A strategy for performing 
cross-validation exper iments  using prepared biological samples  of known concentrat ion and "real" samples from clinical 
trials is presented.  The  statistical techniques used to compare  data sets and establish acceptability of  the assays are 
illustrated by practical examples.  
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Introduction 

There  has been a considerable emphasis in 
recent years on the standardization of valid- 
ation procedures for bioanalytical assays. An 
international conference focused on Analytical 
Methods Validation: Bioavailability, Bio- 
equivalence and Pharmacokinetic Studies in 
Washington, DC in December  1990 [1, 2]. Less 
attention has been paid to the topic of com- 
parison studies. This issue has become increas- 
ingly more important  with the advent of 
"global" development  projects resulting in 
clinical studies and bioanalytical programs 
being conducted in more than one location. 
Additionally, as resources become stretched 
and fast-track development increases in 
importance,  more pharmaceutical companies 
are contracting out assay work. 

Various texts (e.g. [3, 4]) present the statist- 
ical procedures used to compare two methods 
or laboratories. Schemes for evaluating com- 
parison studies have been presented for clinical 
chemistry assays [5, 6] and analytical chemistry 
methods [7]. Westgard and Hunt  [8] while 
examining the potential of the various statist- 
ical tests for determining errors in comparison 
studies, concluded that linear regression prob- 
ably provides the most useful information. 
More rigorous linear regression models which 

consider the effect of errors associated with 
both variables have recently been applied to 
the comparison of analytical methods [9]. 

Bioanalytical methods employed in 
pharmacokinetic and toxicokinetic studies 
present particular problems for comparative 
studies. The assays are often performed over 
several orders of magnitude and the concen- 
tration dependence of the assay variance may 
become significant. The statistical tests are 
limited by the relatively small amount of 
subject sample available. Also, historical data 
banks are not generally available for statistical 
examination. 

Methods 

Data sets 
A simulated data set of concentration values 

was generated and manipulated to mimic error 
types. Systematic errors were simulated by the 
addition of a fixed or relative concentration to 
each reference value. Random errors were 
produced in the data set by using a normal 
distribution of random numbers generated by 
Microsoft Excel, 4.0. 

Inter-laboratory cross-validations were per- 
formed by analysing both prepared controls 
and samples collected from subjects in clinical 
studies. The samples were analysed in two 
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different laboratories by similar analytical 
methods. 

Each experimental data set was examined 
using linear regression and a paired t-test to 
determine the various types of errors in the 
comparative data and to establish criteria for 
evaluating the laboratories. Statistical calcu- 
lations were performed in Microsoft Excel, 
4.0. Weighted linear regression was performed 
using SAS, 6.08. Data obtained from replicate 
analyses of standards or controls performed 
during the validation of the assay in each 
laboratory were used to determine the assay 
reproducibility. 

C r o s s - v a l i d a t i o n  s c h e m e  

A suggested scheme for performing a cross- 
validation experiment is presented in Fig. 1. 
Although the same procedure could apply to 

the cross-validation of one assay in two differ- 
ent laboratories (determination of inter- 
laboratory precision) or to the comparison of 
two different methods for the determination of 
the same analyte (verification of accuracy), 
only the former process will be discussed. 

The first step is to establish and validate the 
assay in both laboratories according to 
accepted standards of accuracy, precision and 
specificity [1, 2]. Obtaining an accurate esti- 
mate of precision across the concentration 
range is necessary to determine appropriate 
statistical tests. A thorough review of all 
laboratory documentat ion and SOPs related to 
the assay procedure should be undertaken to 
ensure consistency in preparation of standards, 
including matrix sources, calculation methods 
and data rounding techniques. 

At this point a decision has to be made about 
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Figure 1 
A proposed scheme for performing cross-validations between assays. 
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what constitutes acceptable reproducibility 
based on the performance of the assay in each 
laboratory,  and the requirements of the study. 
An estimation of the expected inter-laboratory 
precision can be made from the precision 
measured during the validation in each indi- 
vidual laboratory. 

Duplicate sets of samples are then assayed 
simultaneousIy. The sample sets should include 
both samples of known concentration (con- 
trois), prepared in the appropriate matrix, and 
a series of subject samples obtained during a 
study. The sample concentrations should be 
chosen to cover the calibration range of the 
assay, or the full range expected to be encoun- 
tered during a study. The number of samples 
necessary to achieve adequate power to deter- 
mine a difference between two methods can be 
calculated based on the method variability and 
statistical probability [10]. Generally,  for the 
comparison of two assays with similar pre- 
cision, a sample size of 20-30 samples is 
sufficient to detect a difference of 1 RSD% at 
the 0.05 significance level with a power of 
90-95%.  

Once the samples have been analysed the 
data sets are compared and the differences 
between the two determinations evaluated by 
the methods described below. 

D a t a  analys is  - -  sys temat ic  error  

Linear  regression is the simplest and most 
common tool used to assess systematic error. 
The technique is applicable to the deter- 
mination of both constant (fixed) systematic 
error  and proportional (relative) systematic 
error.  Non-weighted linear regression is often 
suitable as a first approximation. However ,  it is 
more appropriate to use weighted linear 
regression in cases where variance increases 
across the concentration range [11]. In 
chromatographic methods the increase in 
variance is approximately proportional to the 
concentrat ion,  indicating a weight of 1/x is 
appropriate.  

Ei ther  laboratory may be arbitrarily chosen 
as the reference,  but, if the assay precision is 
significantly different in the two laboratories, 
the more precise laboratory should be used as 
the reference.  The data generated by the test 
laboratory are compared to those produced by 
the reference laboratory using least squares or 
linear regression analysis. If the only differ- 
ences between the determinations in the two 
laboratories are caused by random errors 
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Figure 2 
Representative linear regression plots illustrating the 
effects of different errors: (a) random error; (b) constant 
error; (c) proportional error. 
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associated with the measurements ,  the linear 
regression analysis will produce a straight line 
passing through the origin, with a slope of 1, as 
shown in Fig. 2(a). The data points will be 
evenly scattered about  the 45 ° line. Any 
deviation f rom this situation indicates the 
presence of systematic errors. However ,  these 
errors  must  be evaluated to determine if they 
are significant. 

A non-zero intercept gives a measure  of the 
c o n s t a n t  e r r o r .  The simulated data shown in 
Fig. 2(b) show a fixed bias of 10 ng ml - l .  The 
intercept obtained from such a regression 
analysis is only an estimate of the true inter- 
cept. A confidence interval for the true inter- 
cept is given by the following equation 

CI = b ± t (SE), 

where b is the calculated intercept,  t is taken 
f rom the t table with (n - 2) degrees of 
f reedom at the appropriate  significance level 
(commonly,  ot = 0.05), SE is the standard 
error  of the intercept,  obtained from the 
regression analysis, and n is the number  of data 
points. 

The existence of a fixed bias is indicated if 
b = 0 does not fall within the confidence 
interval. 

Alternatively,  a significance test on the 
intercept can be per formed by computing 

t = b / S E .  

If  the value calculated for the t statistic is 
greater  than the critical value found in the t 
table with (n - 2) degrees of f reedom, then a 
fixed bias exists. 

If  the presence of a fixed bias is detected,  the 
cause of the interference should be investi- 
gated and, if possiblie, eliminated prior to 
repeating the comparison experiment.  Once a 
constant error  has been identified and quan- 
tified it is always possible to adjust the test data 
set to remove  this bias prior to proceeding 
further with the analysis. 

The deviation of the slope from 1 indicates 
the presence of a p r o p o r t i o n a l  e r r o r  as shown 
in Fig. 2(c). Once again the confidence interval 
for the true slope should be calculated from 

CI = m ± t ( S E ) ,  

where m is the calculated slope, t is obtained 
from the table with (n - 2), degrees of 

f reedom, and SE is the standard error of the 
slope, obtained from the regression analysis. 

A proport ional  error exists if m = 1 does not 
lie within this confidence interval. 

The significance of the difference of the 
calculated slope f rom unity can also be tested 
using a t test, where 

t =  (m - 1.00)/SE. 

If  the calculated value of the t statistic is 
greater  than the appropr ia te  value in the t 
table, the existence of a proport ional  error is 
indicated. 

The use of least squares linear regression 
may,  however,  produce an underest imation of 
the slope and intercept.  Ordinary linear 
regression applies to the situation where only 
the dependent  variable (Y) is subject to error 
and the independent  variable (X) consists of 
constant values. In a cross-validation exper- 
iment  both the reference data (X) and the test 
data  (Y) are subject to measurement  error  and 
ordinary least-squares may be inappropriate.  
In this case, the measurement  error  model [9] 
would give bet ter  estimates of the slope and 
intercept.  If  outliers are present  in the data, 
least squares based regression techniques can 
be unreliable and a robust linear regression 
technique may be more  appropriate  [9]. 

D a t a  a n a l y s i s  - -  r a n d o m  e r r o r  

It is common to look at the differences 
between the paired individual concentration 
values to examine the r a n d o m  e r r o r .  The 
standard deviation of the differences (SDd) 
provides a measure  of the random error.  
However ,  when working with a typical bio- 
analytical assay that covers a wide concen- 
tration range, the significance of this random 
error  may be difficult to interpret.  The simu- 
lated data set shown in Table 1 contains a 
random error  of approximately 10%. The 
random error,  est imated from SDd, is 51.8 ng 
ml -  I. An error  of this magnitude is considered 
acceptable at the higher concentration levels 
but would be unacceptable at the lower end of 
the calibration curve. 

Since SDd is affected by systematic errors, it 
will not give an accurate estimate of the 
random error  in the presence of a large 
systematic error.  In this case, the standard 
error  of the y-est imate (Sy) obtained from the 
linear regression analysis, provides a bet ter  
est imate of the random error since it is un- 
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Table 1 
Estimation of random error 

Ref. Test Diff. % Diff. 

1175 1351 176 15.0 
1182 1159 -23 -1.9 
1081 1033 -48 -4.4 
1026 1090 64 6.3 
419 467 48 11.0 
777 821 44 5.6 
522 631 109 20.8 
507 527 20 3.9 
200 183 -17 -8.5 
504 502 - 2  -0.4 
514 523 9 1.8 
501 538 37 7.4 
486 469 -17 -3.4 

1820 1940 120 6.6 
1892 1844 -48 -2.6 
1764 1861 97 5.5 
1735 1750 15 0.8 
916 929 13 1.4 
810 746 -64 -7.9 
829 938 109 13.1 
345 373 28 8.1 
210 241 31 14.6 
156 163 7 4.3 
223 258 35 15.7 
301 288 -13 -4.3 
127 146 19 14.7 
205 168 -37 -18.2 
198 226 28 14.3 
162 160 - 2  -1.1 
101 97 - 4  -4.0 
82.5 81.9 -0.6 -0.7 
79.3 78. I - 1.2 - 1.6 
51.2 55.4 4.2 8.1 
43.0 43.9 0.9 2.1 

Mean 21.6 3.6 
SD 51.8 8.4 
t 2.44 2.51 

t critical = 2.0322 

a f f ec t ed  by  the  p re sence  o f  sys t emat i c  e r ro r s  
[8]. 

A m o r e  mean ing fu l  e s t ima te  o f  the  r a n d o m  
e r r o r  is o b t a i n e d  by  ca lcu la t ing  a d i f fe rence  
n o r m a l i z e d  to  the  r e f e rence  concen t r a t i on  (% 
d i f fe rence) .  The  s t a n d a r d  dev i a t i on  (8 .4% in 
T a b l e  1) p r o v i d e s  a useful  m e a s u r e  o f  r a n d o m  
e r r o r  across  the  c o n c e n t r a t i o n  range .  In  
a d d i t i o n ,  e x a m i n a t i o n  o f  the  n o r m a l i z e d  
d i f fe rences  a l lows o b s e r v a t i o n  of  poss ib le  ou t -  
l iers.  A s igni f icance  tes t  such as D i x o n ' s  [12] 
can  be  used  to d e t e r m i n e  w h e t h e r  o r  no t  the  
d a t a  po in t  is a t rue  ou t l i e r  and  can,  t he r e fo r e ,  
be  e x c l u d e d  f rom the  da t a  set.  

A c o m m o n  s ta t is t ica l  p r o c e d u r e  used  to 
c o m p a r e  two  sets of  da t a  and  to d e t e r m i n e  
w h e t h e r  the  d i f fe rence  b e t w e e n  t h e m  is sig- 
n i f icant  is the  p a i r e d  t test .  T h e  t s tat is t ic  is 
ca l cu la t ed  f rom the  m e a n  o f  the  d i f fe rences  (d)  

and  the s t a n d a r d  e r r o r  of  the  d i f fe rences  
( S D j / V ' n )  

d 
t -  R X/-n-. 

SDd 

T h e  va lue  o b t a i n e d  for  the  t s tat is t ic  is com-  
p a r e d  to the  cri t ical  t f o u n d  in the  tab les  for  a 
two- s ided  tes t  at  the  5% signif icance level  (et = 
0.05) wi th  (n - 1) deg rees  of  f r e e d o m .  

Since t is d e t e r m i n e d  f rom the ra t io  of  the  
mean  d i f fe rence  (bias)  and  the SD0 ( r a n d o m  
e r ro r ) ,  it is poss ib le  to ob t a in  a low value  for t 
when  bo th  cons tan t  e r ro r  and  r a n d o m  e r r o r  a re  
large.  S imi lar ly ,  it is poss ib le  to ob ta in  a 
s ignif icant  va lue  for  t when  bo th  types  of  e r ro r  
a re  small .  In  the  da t a  set  shown in Tab le  1, a 
r a n d o m  e r r o r  was s imula t ed  by  mul t ip ly ing  
each  r e f e rence  va lue  by a r a n d o m  n u m b e r  
f rom a n o r m a l  d i s t r ibu t ion .  The  larges t  differ-  
ence  b e t w e e n  any pa i r  of  va lues  is 20 .8%.  The  
m e a n  d i f fe rence  (21.6 ng m1-1, 3 . 6 % )  and  SD d 
(51.8 ng m1-1, 8 . 4 % )  are  bo th  smal l ,  and  the 
da t a  sets would ,  p r o b a b l y ,  be  cons ide red  
c o m p a r a b l e .  The  resu l t an t  t is, howeve r ,  
g r e a t e r  than  t cri t ical  (2.03).  I t  is, t he r e fo re ,  
r e c o m m e n d e d  tha t  the  t s tat is t ic  should  no t  be  
used  as an a c c e p t a nc e  o r  r e j ec t ion  c r i t e r ion ,  
a l though  the  c o m p o n e n t s  of  the  stat is t ic  may  
p rov ide  useful  i n fo rma t ion  a b o u t  the  e r rors  
p resen t .  

Acceptance criteria 
A c c e p t a b i l i t y  is, to a cer ta in  ex ten t ,  a m a t t e r  

o f  j u d g e m e n t  based  on  the p u r p o s e  for  the  assay 
c o m p a r i s o n .  M o r e  s t r ingent  c r i te r ia  wou ld  be 
r e q u i r e d  if da t a  f rom bo th  assays were  to be 
c o m b i n e d  in a s ta t is t ical  analysis .  Such a 
s i tua t ion  m a y  occur  in a p o p u l a t i o n  p h a r m a c o -  
k ine t ic  s tudy.  Sl ightly less str ict  c r i te r ia  m a y  be 
t o l e r a t e d  where  da t a  sets  a re  not  e x p e c t e d  to 
be  c o m b i n e d  a l though  c ross - s tudy  compar i sons  
m a y  be  p e r f o r m e d .  

Once  the  m a g n i t u d e  of  the  e r ro r s  has  been  
e s t i m a t e d  cr i te r ia  should  be  a pp l i e d  to de te r -  
mine  if these  a re  within accep t ab l e  l imits .  A 
dec is ion  on  w h e t h e r  o r  no t  the  d i f fe rences  are  
r e a s o n a b l e  can be  m a d e  by cons ide r ing  the 
p rec i s ion  of  the  assay  in the  two l abo ra to r i e s .  

A c o m b i n e d  s t a n d a r d  dev ia t i on  is o b t a i n e d  
by  add ing  the  var iances  of  the  two assays 

c o m b i n e d  SD = V'(SD1) 2 + (SD2) 2. 

Us ing  the  in te r -assay  prec i s ion  da t a  o b t a i n e d  
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during the validation of the assays, it is possible 
to calculate the expected combined standard 
deviation. Since the variance increases with 
concentrat ion,  this value should be calculated 
at several different concentrations,  sufficient to 
cover  the calibration range. 

The  expected combined assay precision at 
any concentrat ion level, can be back calculated 
f rom the standard deviation and the 
concentrat ion 

where 

S R = "~"(Sw)2 -.1- (Sb) 2. 

R is defined as the maximum tolerable differ- 
ence (with 95% confidence) between two 
individual determinations in two different 
laboratories.  This latter procedure  is normally 
more  applicable to a situation where the assay 
is per formed in several laboratories.  

combined % RSD = [SDcombined/COnC. ] × 100. 

The  calculated combined assay precisions for 
two assays with individual precisions from 5 to 
20% are repor ted  in Table 2. 

Table 2 
Predicted combined % RSD for two assays of known 
precision 

Assay B 
% RSD 

Assay  A 
% RSD 5 10 15 20 

5 7.1 11.2 15.8 20.6 
10 11.2 14.1 18.0 22.4 
15 15.8 18.0 21.2 25.0 
20 20.6 22.4 25.0 28.3 

As a first approximation,  if the est imated 
random error  is less than or equal to the 
combined  assay precision the cross-validation 
can be considered successful. 

The  combined standard deviation can also 
be used to calculate the expected reproducibil-  
ity factor,  r 

r = 2~v/2SDcombined ,  

where 2 is an approximation for t, and X/2 is 
V'n, the number  of assays. 

At  least 95% of the duplicate assay deter- 
minat ions should agree within + r for a 
successful cross-validation. Once again, r 
should be calculated across the concentration 
range to take account of the increase in 
variance with concentration.  

This is an approximation to the repro- 
ducibility limit, R, which can be statistically 
de termined from the within laboratory stan- 
dard deviation (Sw) and the between-labora-  
tory s tandard deviation (Sb) [3, 7] 

R = 2 x X/2 x S t ,  

Results  and Discuss ion m Appl icat ion of  the 
Procedures  

Case 1 

The data in Table 3 were obtained during a 
cross-validation experiment.  The samples were 
assayed by an H P L C  method that had been 
independent ly validated in each laboratory to 
required standards [1, 2], over  a calibration 
range of 25-2500 ng m1-1. Unweighted linear 
regression analysis of the data indicates an 
intercept of 11.80 ng m1-1 with a standard 
error  of 18.80 ng ml -~. The calculated con- 
fidence interval of -26 .92  to 50.52 ng ml -~ 
contains zero so the intercept is not considered 
to be significant. Use of weighted linear 
regression analysis estimates the intercept at 
12.26, but with a much narrower  confidence 
interval (3.64, 20.87 ng m1-1) which does not 
contain zero. Application of the errors in 
variables regression model proposed by Roy 
[11] calculates the intercept as insignificant 
(9.25 ng ml - l ;  -25 .92 ,  44.42). 

The slope is, however,  found to be signifi- 
cantly different f rom 1 by all three methods,  
since 1 is not contained within the confidence 
interval. These data indicate the presence of a 
systematic proport ional  error  of between 22 
and 27%. 

A critical area to examine when a propor-  
tional error  is detected is the preparat ion of 
standards. Particular attention should be paid 
to corrections that were made during the 
preparat ion of standard stock solutions such as 
corrections for the purity of  the reference 
standard material  or corrections for salt 
content.  Compar ison of stock standard sol- 
utions and batches of reference standard 
materials may help identify a problem. 

Investigation in this case, traced part  of the 
error  to the preparat ion of standards. Two 
different lots of reference standard material 
had been used, and corrections were not made 
for adsorption of water  in one of the labora- 
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tories. After the appropriate corrections were 
made a successful cross-validation was 
performed. 

Case 2 
Data obtained from another cross-validation 

experiment are presented in Table 4. The 
calibration range of the HPLC assay was 
0 .025-20 Ixg m1-1 in this case, but the drug 
concentrations measured in the study samples 
did not exceed 2 txg ml -I. The assay accuracy 
and precision were each within 10% in both 
laboratories (15% at the minimum quantifiable 
limit in laboratory A).  

An unweighted linear regression analysis 
shows a slope of 0.979 that is found not to be 
significantly different from one,  using either 
the t-statistic (t = 0.74) or the 95% confidence 
interval about the slope (0.919-1.039) .  There 
is, therefore, no significant proportional error 
in this data set. Similarly the statistical tests for 
significance of the intercept, indicate that the 
intercept of - 0 . 0 4 3  I~g m1-1 is not significantly 
different from 0 and no significant fixed bias is 
determined between the two sets of data. 

Use of weighted linear regression (Table 4) 
changes the estimate for the slope (0.952) and 
intercept ( - 0 . 0 1 8  ng ml -~) but does not affect 

the conclusion about the significance of the 
errors. Similarly, application of the error in 
variables regression method indicates that the 
systematic errors are not significant. 

The simplest approach for viewing the data 
to examine the random error is to prepare a 
frequency distribution of relative differences. 
In this method the number of pairs of samples 
that fall within certain percentages of each 
other are tabulated. The more sample pairs 
that fall in the lower part of the frequency 
distribution, the better is the agreement 
between the two assays. If any pairs fall well 
outside the acceptable limit an outlier test [12] 
can be used to check if the value can be 
rejected. A frequency distribution of this data 
set is shown in Table 5. Fifty per cent of the 
sample pairs fall within 5% of each other, and 
all data pairs are within 16.2%. 

The calculation of the combined assay stan- 
dard deviation and precision from the indi- 
vidual assay precisions is presented in Table 6. 
The observed random error of 5.8% is within 
the calculated inter-assay precision of 5 .7 -  
15.5%. The data are plotted in Fig. 3. The 
lines representing the reference +r  are in- 
cluded. All 20 values fall within the expected 
reproducibility criterion. 

The assays have been shown to produce 

Table  5 
De terminat ion  of  random error 

Diff.  ( A - B )  
(l~g ml -I )  

% Diff.  
( A - B ) / A  

Frequency  % 

0-5  5-10 10-15 15-20 

Mean 
SD 
t 
t-critical 

0.183 
0.188 
0.115 
0.042 
0.034 
0.126 
0.042 
0.071 
0.005 
0.024 
0.023 
0.038 
0.074 

- 0 . 0 2 0  
0.042 
0.174 

-0 .005  
0.015 
O. 077 

- 0 . 0 0 2  

0.062 
0.064 
4.385 
2.093 

15.6 
15.9 
10.6 
4.1 
8.1 

16.2 
8.0 

14.0 
2.5 
4.8 
4.5 
7.6 

15.2 
-1 .1  

2.2 
9.9 

- 0 . 3  
1.6 
9.5 

- 0 . 2  

7.4 
5.8 
5.7 

Total  number  10 
50% 

x 

x 
x 

x 

x 

x 

4 
20% 

3 
15% 

3 
15% 
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T a b l e  6 
Calculation of inter-assay standard deviation and precision 

MARY T. GILBERT et al. 

0.025 Ixg ml -t 0.400 Ixg ml -~ 10.0 ~ ml -~ 

A B A B A B 

Mean 0.0260 0.0255 
SD 0.0037 0.0011 
Var 1.37 × 10 -5 1.28 x 10 6 
SDcomh 0.0039 
% RSD,,,m b 15.5 

0.417 0.380 10.1 10.8 
0.034 0.010 0.417 0.384 
0.001 9.59 × 10 -5 0.174 0.148 
0.036 0.568 
8.9 5.7 

3 -- e~ 

Reference + r ~ "  

ss S + ss ~ 

• eference - r 
.~ ss• fs ~ f f  s" ~f  

J o  ~S ÷ ~s 
ss S • 

as S 

st ° 
0 '~,f , I J I ~ I 

1 2 3 
Reference data (ug/ml) 

Figure  3 
Linear regression plot of data from Laboratory B (test 
data) against data from Laboratory A (reference data). 
The calculated reproducibility limits are plotted as refer- 
ence +r.  

comparable results using all these acceptance 
criteria. 

Conclusion 

Analysis of 20-30 samples in two different 
laboratories generally provides sufficient data 
to allow evaluation of the systematic and 
random errors associated with the two assays 
using simple statistical techniques. 

The primary method of choice is least 
squares linear regression since the procedure is 
generally accessible and it provides good 
estimates for the intercept and slope. If the 
appropriate software is available a weighted 
linear regression should be used since this 
corrects for the change in variance throughout 
the calibration range. More rigorous methods 
that take account of the errors in both variables 
and are not affected by outliers should provide 
the best estimate of the systematic errors but 
these methods require sophisticated programs 
that are not routinely available in the bio- 
analytical laboratory. 

Random error  should be examined by cal- 
culating the normalized differences between 

the paired determinations. A frequency distri- 
bution can be a useful tool for viewing these 
differences. The expected random error can be 
calculated from the precision of the two indi- 
vidual assays, and acceptance criteria can be 
established accordingly. The judgement of 
acceptability is made based on the established 
criteria and the proposed use of the data. 

Determination of systematic errors should 
lead to the development of standardized pro- 
cedures between sites within a company, and 
with contract facilities. This will ultimately 
result in smaller differences between assays. 
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